Zukunftsschaufenster Energiewende Hessen

Energieautarke Siedlung

Teilprojekt Energieautarke Siedlung

Gefördert durch:

SMA Solar Technology AG

Hessisches Ministerium für Wirtschaft, Energie, Verkehr und Landesentwicklung

Umsetzung:

Universität Kassel

Fachgebiet VWL mit Schwerpunkt dezentrale Energiewirtschaft

Fachgebiet Solar- und Anlagentechnik

Projektteam:

Dr. Ines Wilkens (PL), Dr. Janybek Orozaliev, Jan Kelch, Victor von Loessl

Agenda

Energieautarke Siedlung

- Vorstellung des Projektes
- Ergebnisse der Handlungsfelderanalyse "Energiewendezeiger"
- Ergebnisse der Modellierung (technisch und wirtschaftlich)

Agenda

Energieautarke Siedlung

- Vorstellung des Projektes
- Ergebnisse der Handlungsfelderanalyse "Energiewendezeiger"
- Ergebnisse der Modellierung (technisch und wirtschaftlich)

Zielsetzung des Projektes

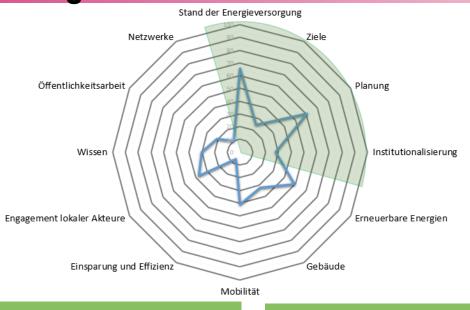
- Energieautarke Siedlung
- Erhöhung des Selbstversorgungsgrades, Verbindung zum öffentlichen Stromnetz bleibt erhalten > provokanter Titel
- Erzeugung und Verbrauch der Energie auf der Siedlungsebene ausbalancieren
- Wärme- und Stromsektor, keine Mobilität
- Bestimmung eines "sinnvollen" Autarkiegrades
- Bezugsjahr 2030
- Wirtschaftliche Ansätze ohne Einspeisevergütung/ "post-EEG"
- Praxisorientierter Ansatz: Umsetzung mit den Menschen vor Ort

Reallabor zur Vollversorgung einer Siedlung mit erneuerbaren Energien in den Sektoren Strom und Wärme

....unter den Randbedingungen Wirtschaftlichkeit und Akzeptanz

Arbeitsplanung und Meilensteine

Agenda


Energieautarke Siedlung

- Vorstellung des Projektes
- Ergebnisse der Handlungsfelderanalyse "Energiewendezeiger"
- Ergebnisse der Modellierung (technisch und wirtschaftlich)

Ergebnis Kaufungen im Überblick

Vertiefung einzelner Handlungsfelder

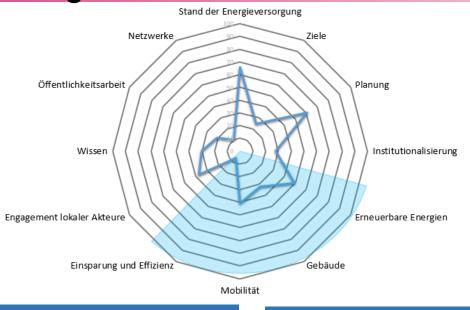
Strategische Themenbereiche

Energieversorgung in Kaufungen

- Windpark erhöht den Anteil EE auf ca. 80% (2017)
- Wärme bei ca. 9%, Endenergie 6% (2010)
- > Ergebnis jetzt vermutlich besser

Zielsetzungen in Kaufungen

- 100% EE Strom in 2030
- Keine Ziele für den Wärmeoder Mobilitätssektor
- Politische Beschlüsse, jedoch keine festen Verantwortlichkeiten


Planung und Orientierung in Kaufungen

- Klimaschutzkonzept
- Einige Fördermittel werden gut genutzt
- Energiemanagementsystem liegt vor, jedoch einmalige Anwendung

Institutionalisierung in Kaufungen

- eigene Gemeindewerke,
 Energieagentur
- Förderangebot PV/Solar
- Kommunale E-Fahrzeuge pilothaft, Car-Sharing
- Keine hauptamtlich
 Verantwortliche/n in der
 Stadtverwaltung

Vertiefung einzelner Handlungsfelder

Energiesektoren

Erneuerbare Energien in Kaufungen

- Windkraft nahezu ausgenutzt,
 Solarthermie/ PV und Holz
 noch Potenziale
- Liegenschaften: PV gut, Ökostrom, Potenzial im Wärmesektor
- innovativ: Mieterstrom

Gebäudesektor in Kaufungen

- Durchschnittlicher
 Sanierungsgrad in den
 Liegenschaften und im
 sonstigen Gebäudebestand
- Keine Vorgabe EnEV zu unterschreiten

Mobilität in Kaufungen

- Gutes ÖPNV Angebot
- Pendlerparkplätze,
 Sammeltaxen
- Radverkehrskonzept?
- E-Ladesäulen und E-Autos?
- Car-Sharing?

Einsparung und Effizienz in Kaufungen

- Keine Nahwärmenetze
- LED-Straßenbeleuchtung ca. 50%
- Potenziale in den Liegenschaften (LED, Heizungsoptimierung)

Vertiefung einzelner Handlungsfelder

Engagement lokaler Akteure Kaufungen

- Bürger- energiegenossenschaft
- Kommunen Lossehof und Niederkaufungen, kirchliche Aktivitäten für die Energiewende, Bürgerengagement verstärkt
- Kommunalverwaltung und Politik ausreichend
- eher wenig bis gar kein
 Engagement in den
 Sektoren Bildungs einrichtungen, Wirtschaft,
 Landwirtschaft....

Stand der Energieversorgung Netzwerke Öffentlichkeitsarbeit Wissen Unstitutionalisierung Engagement lokaler Akteure Einsparung und Effizienz Gebäude Mobilität

Wissensmanagement in Kaufungen

- Forschungskooperationen, auch mit Agenturen
- Kein Beratungsangebot für Bürger und Unternehmen
- Keine Kooperationen mit den Bildungseinrichtungen

Öffentlichkeitsarbeit in Kaufungen

- Internetauftritt zum Thema Energiewende
- Bürgerbeteiligung gelegentlich
- Beiträge in Zeitungen?
 Soziale Medien?

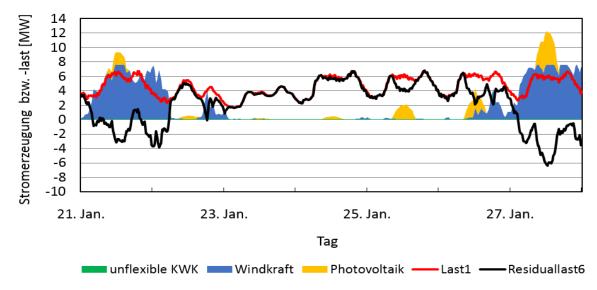
Akteursbezogene Themenereiche

Netzwerke in Kaufungen

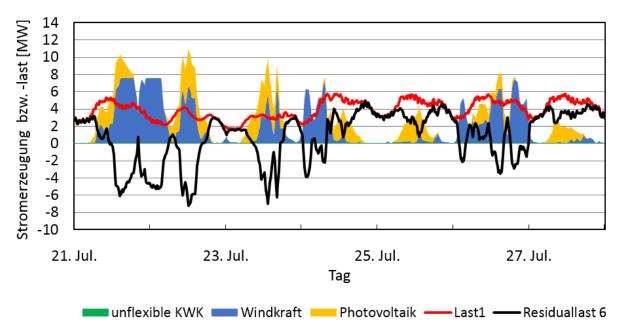
- Lokale Arbeitsgruppen
- Wenig Vernetzung im interkommunalen, überregionalen und internationalen Bereich

Zusammenfassung Ergebnis Energiewendezeiger Kaufungen

- Stärken in den Bereichen
 - Stand der Energieversorgung (Stromsektor, Ausbau Windkraft)
 - Planung (Klimaschutzkonzept, Nutzung Förderprogramme, Energiemanagement)
 - Ausnutzung EE-Potentiale (Windkraft, PV auf Liegenschaften, Ökostrom in den Liegenschaften)
- Außerdem erwähnenswert: Gemeindewerke, Potential an interessierten Akteuren
- Handlungsbedarf wird in folgenden Feldern gesehen:
 - Ausbau der PV und Solarthermie, Wärmewende fokussieren
 - Hauptamtliches Personal (Klimaschutzmanager oder ähnlich)
 - Liegenschaften: Mehr sanieren, Effizienzpotentiale heben


Agenda

- Vorstellung des Projektes
- Ergebnisse der Handlungsfelderanalyse "Energiewendezeiger"
- Ergebnisse der Modellierung (technisch und wirtschaftlich)


Ist-Stand in Kaufungen: Windpark, PV mäßig, keine KWK

Residuallastverlauf für Woche im Juli

Ist-Stand und Trend 2030 – Stromsektor

SOLAR. UNI-KASSEL.DE

Ist-Stand:

Windkraftanlagen: 11 MW

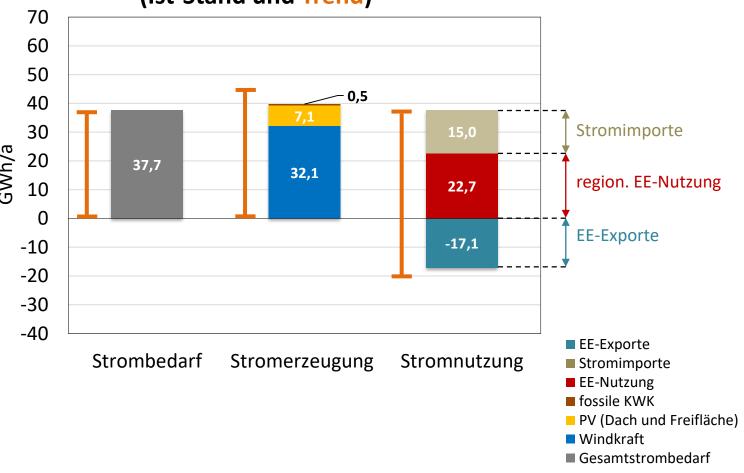
• PV: 8 MWp

• Wärmepumpen in Gebäuden: ca. 140

 bilanzieller Energieautarkiegrad (EAG): 106% (Energiemengenbilanzierung)

lastgerechter EAG: 60%
 (zeitlich aufgelöste Simulation)

Trend:


Gesamtstrombedarf: gleich

PV-Zubau: 6 MWp (+75%)

bilanzieller EAG: 120% (+14%-Punkte)

lastgerechter EAG: 65% (+5%-Punkte)

Regionale Stromnutzung (Ist-Stand und Trend)

→ weitere Szenarien: jeweils Vergleich mit Trend-Szenario (orangene Balken)

"Konzentrierte Anstrengung" 2030 – Stromsektor

fossile KWK

■ Windkraft

PV (Dach und Freifläche)

■ Gesamtstrombedarf

Zubau ab Ist-Stand

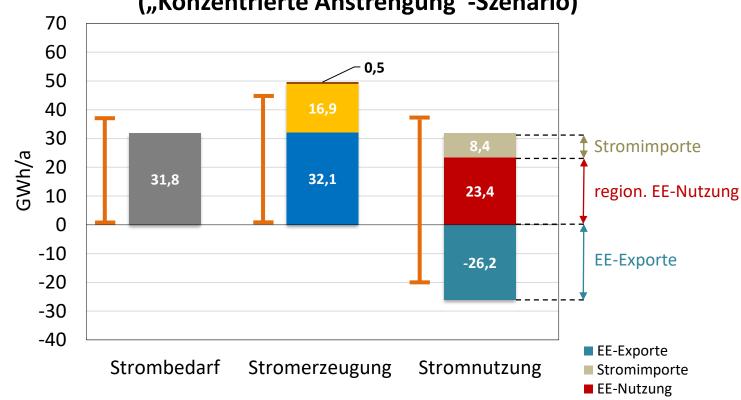
• PV: 11 MWp

Solar-Batteriespeicher à 5 kWh: 58

Großbatteriespeicher à 1 MWh: 4

• Elektrofahrzeuge (EVs): 430

Wärmepumpen in Gebäuden: 350


Vergleich mit Trend:

Gesamtstrombedarf: -16%

bilanzieller EAG: 156% (+36%-Punkte)

lastgerechter EAG: 73% (+9%-Punkte)

Regionale Stromnutzung ("Konzentrierte Anstrengung"-Szenario)

→ für die Anhebung des lastgerechten EAG sind besonders die Maßnahmen Strombedarfsreduktion, Installation von Großbatteriespeichern und PV-Zubau von Bedeutung

"Maximale Anstrengung" 2030 – Stromsektor

Regionale Stromnutzung ("Maximale Anstrengung"-Szenario)

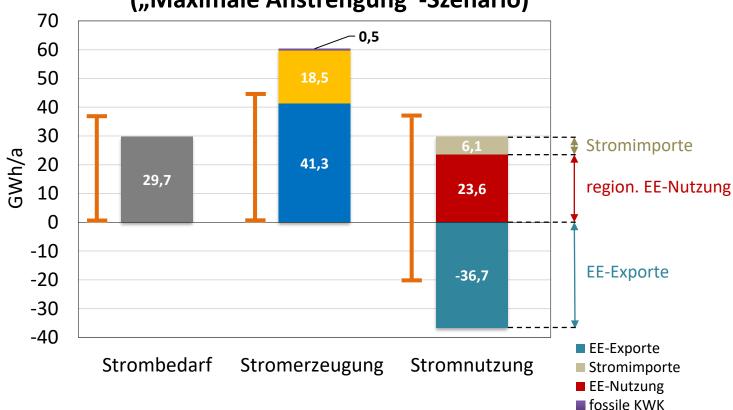
Zubau ab Ist-Stand:

Windkraftanlagen: 3 MWPV: 13 MWp

• Solar-Batteriespeicher à 5 kWh: 65

Großbatteriespeicher à 1 MWh: 8

• Elektrofahrzeuge: 830


Wärmepumpen in Gebäuden: 760

Vergleich mit Trend:

Gesamtstrombedarf: -21%

bilanzieller EAG: 203% (+83%-Punkte)

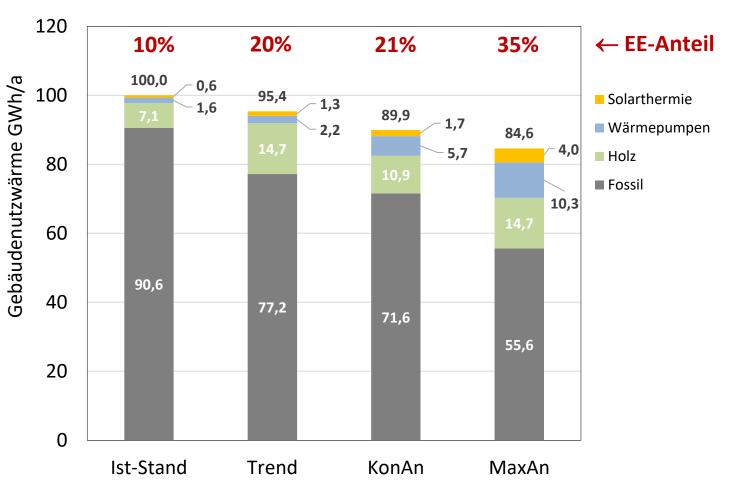
lastgerechter EAG: 79% (+15%-Punkte)

→ Erhöhung des lastgerechten EAG um 6%-Punkte im Vergleich zu Szenario "konzentrierte Anstrengung" durch stärkeren Technologiezubau bzw. höhere Strombedarfsreduktion

PV (Dach und Freifläche)

■ Gesamtstrombedarf

■ Windkraft


Simulationsergebnisse Kaufungen Szenarienvergleich Wärmesektor

Vergleich des KonAn- und MaxAn-Szenarios mit dem Trend-Szenario:

- Zunahme des EE-Anteils von
 +1- bis +15%- Punkte (und dadurch
 Rückgang der fossilen Wärmebereitstellung)
- deutliche Zunahme von holziger Biomasse im Trend-Szenario (BAFA-Daten Alheim)
- Wärmebedarfsminderung um -6%- bis -11% (evt. Abweichung vom Klimaschutzkonzept wegen unterschiedlicher Annahmen für die Sanierungstiefe)
 - → Anstrengungen hier besonders wichtig!

Szenarienvergleich – Bereitstellung des Gebäudenutzwärmebedarfs

SOLAR. UNI-KASSEL.DE

Erkenntnisse und Ausblick

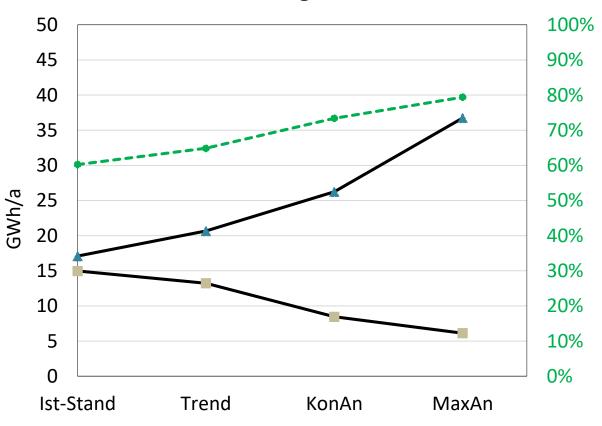
Stromsektor:

- lastgerechter Energieautarkiegrad mit 60% bereits hoch
- 75% bis 80% lastgerechter Energieautarkiegrad im Stromsektor ohne "enormen" Aufwand möglich

Wärmesektor:

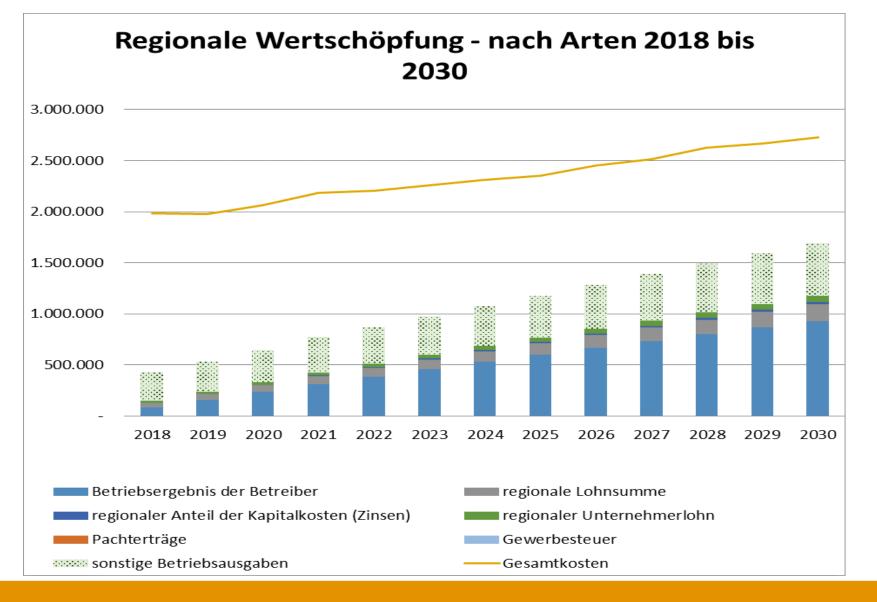
- Gebäudesanierung: langsamer Prozess und elementar wichtig, daher möglichst sofort beginnen (!!)
 - → Wärmebedarfsreduktion
 - → sinnvoller Einsatz zeitgemäßer Technologien (z.B. Wärmepumpen, regenerativ gespeiste Wärmenetze)
- Biomasseeinsatz ist nur begrenzt möglich
- Wärmepumpen & Solarthermie: intensiver Ausbau wichtig
 - → Einsparung begrenzter nachwachsender Rohstoffe
 - → Verzicht auf fossile Energieträger

Szenarienvergleich Stromsektor


- Der lastgerechte EAG erhöht sich sowohl mit dem Ausbau der EE-Stromerzeugung und der Batteriespeicher als auch mit fortschreitender Strombedarfsreduktion (Ambitionsgrad des Szenarios).
- Die Stromexporte nehmen mit höherem Ambitionsgrad des Szenarios zu. Gründe hierfür sind die vermehrte EE-Produktion und der abnehmende Strombedarf.
- Die Zunahme des lastgerechten EAG und die Abnahme des Strombedarfs gehen mit einer Abnahme der Stromimporte einher.

Abkürzungen:

KonAn: "Konzentrierte Anstrengung" (Szenario)


MaxAn: "Maximale Anstrengung" (Szenario)

Szenarienvergleich Strom

─Stromimporte **→**Stromexporte **→** lastg. Energieautarkiegrad

Regionale Wertschöpfung

Beispiel Szenario "Konzentrierte Anstrengung"

Kosten - Trendszenario

bilanzieller Energieautarkiegrad: 106 % lastgerechter Energieautarkiegrad: 60 % EE-Anteil Wärme: 10 %

Investitionen EE gesamt : 21,5 Mio. € (ohne Gebäudesanierung)

dadurch regionale Wertschöpfung 8,2 Mio. €

Gebäudesanierung 20,63 Mio. €

Energieautarke Siedlung

Kaufungen 2030

bilanzieller Energieautarkiegrad: 120% lastgerechter Energieautarkiegrad: 65% EE-Anteil Wärme: 20%

Pro Jahr (ohne Preissteigerungen)

Stromeinnahmen 0,8 Mio. €
Stromausgaben 7,9 Mio. €
Ausgaben Gas/Öl 11,7 Mio. €

Gesamt ca. 18,9 Mio. € Ausgaben

Einsparung über 12 Jahre ca. 18,3 Mio. €

Stromeinnahmen 1,8 Mio. €
Stromausgaben 7,9 Mio. €
Ausgaben Gas/Öl 10,0 Mio. €

Gesamt ca. 16,1 Mio. € Ausgaben

Kosten – Szenario Konzentrierte Anstrengung

Energieautarke Siedlung

Kaufungen 2018

bilanzieller Energieautarkiegrad: 106% lastgerechter Energieautarkiegrad: 60% EE-Anteil Wärme: 10%

Investitionen EE gesamt: 32,0 Mio. € (ohne Gebäudesanierung)

dadurch regionale Wertschöpfung 13,9 Mio. €

Gebäudesanierung 46,88 Mio. €

Kaufungen 2030

bilanzieller Energieautarkiegrad: 156% lastgerechter Energieautarkiegrad: 73% EE-Anteil Wärme: 21%

Pro Jahr (ohne Preissteigerungen)

Stromeinnahmen 0,8 Mio. €
Stromausgaben 7,9 Mio. €
Ausgaben Gas/Öl 11,7 Mio. €

Gesamt ca. 18,9 Mio. € Ausgaben

Einsparung über 12 Jahre ca. 29,1 Mio. €

Stromeinnahmen 1,8 Mio. €
Stromausgaben 7,0 Mio. €
Ausgaben Gas/Öl 9,3 Mio. €

Gesamt ca. 14,4 Mio. €

Kosten – Szenario Maximale Anstrengung

Energieautarke Siedlung

Kaufungen 2018

bilanzieller Energieautarkiegrad: 106 % lastgerechter Energieautarkiegrad: 60 % EE-Anteil Wärme: 10 %

Investitionen EE: 70,3 Mio. € (ohne Gebäudesanierung)

dadurch regionale Wertschöpfung 25,3 Mio. €

Gebäudesanierung 75 Mio. €

Kaufungen 2030

bilanzieller Energieautarkiegrad: 203% lastgerechter Energieautarkiegrad: 79% EE-Anteil Wärme: 35%

Pro Jahr (ohne Preissteigerungen)

Stromeinnahmen 0,8 Mio. €
Stromausgaben 7,9 Mio. €
Ausgaben Gas/Öl 11,7 Mio. €

Gesamt ca. 18,9 Mio. € Ausgaben

Einsparung über 12 Jahre ca. 45,5 Mio. €

Stromeinnahmen 2,0 Mio. €
Stromausgaben 6,7 Mio. €
Ausgaben Gas/Öl 7,2 Mio. €

Gesamt ca. 11,9 Mio. €

Überblick Szenarienvergleich

Kriterien	Trend-Szenario	Szenario Konz. Anstrengung	Szenario Max. Anstrengung
Investitionskosten <u>für EE</u> inklusive <u>Gebäudesanierung</u>	21 Mio. € 41,6 Mio. €	32 Mio € 78,9 Mio. €	70 Mio € 145 Mio. €
Investitionskosten pro Person und Jahr	277 €	526€	967 €
Regionale Wertschöpfung durch EE [Mio €]	8,2 Mio €	13,9 Mio €	25,3 Mio €
Einsparungen für Strom- und Wärmebezug (ohne Preisst.)	18,3 Mio. €	29,1 Mio. €	45,5 Mio. €
bilanzieller EAG Stromsektor [%]	120	156	203
lastgerechter EAG Stromsektor [%]	65	73	79
EE-Anteil Gebäudenutzwärme [%]	20	21	35

wirtschaftliche Sicht

technische Sicht

24

Kontakt:

Dr. Ines Wilkens

Universität Kassel

Fachgebiet Volkswirtschaftslehre mit Schwerpunkt dezentrale Energiewirtschaft

Tel.: +49 561 804-7949

ines.wilkens@uni-kassel.de

www.uni-kassel.de/go/wetzel

Jan Kelch

Universität Kassel

Fachgebiet Solar- und Anlagentechnik

Tel. +49 561 804-3244

j.kelch@uni-kassel.de

www.solar.uni-kassel.de